Übersicht der Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Übersicht der Vorlesung"

Transkript

1 Übersich der Vorlesng 1. Einührng 2. Bilderarbeing 3. Morphologische Operaionen 4. Bildsegmenierng 5. Mermale on Objeen 6. Klassiiaion 7. Dreidimensionale Bildinerpreaion 8. Bewegngsanalse as Bildolgen 9. PCA Hapomponenenanalse 10.ICA Independen Componen Analsis Unabhängigeisanalse

2 8 Bewegngsanalse 8.1 Einleing 8.2 Loale Verschiebngseoren 8.3 Opischer Flss

3 8.1 Einleing

4 Begrie berachen Bewegngen Translaion Roaion on ormesen Objeen dnamische Szenen mi eser Kameraposiion aber ach saische Szenen mi beweglicher Kamera Bildolge: K Bilder werden in onsanen Zeiabsänden agenommen: δ cons o: δ cons = 1

5 Projeion on Bewegngen * P = z P = z * Rämliche Bewegng eines Pnes Bewegng des projizieren Pnes in der Bildebene Projeionsar: Parallelprojeion oder Zenralprojeion * = = z = z z Z = 000 Bildebene: z = = = z * = 0 z z Z = 00 Bildebene: z = 0

6 8.2 Loale Verschiebngseoren

7 Bewegng bei Zenralprojeion aeinanderolgende Bilder: 1 = 01 K 1

8 Loale Verschiebngseoren = δcons = 01K d * * = Pne Pal cons = δ ξ ψ T Repräsenier in der Bildebene die 3D - Bewegng eschwindigei in - bzw. -Richng in der Bildebene

9 Bemerngen In der Bildebene wird also eine beliebige 3D-Bewegng zwischen 2 Bildanahmen approimai drch loale Verschiebngseoren beschrieben. Eine Menge solcher loaler Verschiebngseoren ür einen esen Zeipn deinier ein loales Verschiebngseld in der Bildebene. Es is einem Bildpaar nd 1 zgeordne. Zr approimaien Berechnng loaler Verschiebngselder benz man den opischen Flss.

10 Beispiele Translaion in der Bildebene Translaion senrech zr Bildebene on der Kamera weg Roaion m eine Achse senrech zr Bildebene

11 Korrespondenzproblem Loale Verschiebngseorelder önnen as Bildolgen berechne werden wenn einzelne Oberlächenpne eindeig in der Bildolge erolg werden önnen. Korrespondenzproblem Die Verolgng einzelner Oberlächenpne is nich einach. Objee önnen erschwinden bzw. wieder aachen.

12 Aperrproblem Blendenproblem Ein loal beschräner Asschni einer Bildolge lieer o einen Anhalspn oder nr nzreichende Inormaion über die saindende Bewegng

13 Beispiel Bewegng bei einer periodischen Srr z.b. horizonales ier. Eine Verschiebng m ein Vielaches der Maschenweie is nich erennbar solange man nr einen Asschni des Objees sieh.

14 Beispiel Nr die horizonale Bewegng der Kane is essellbar. Eine eriale Verschiebng is nich z ermieln. Es gib also nendlich iele loale Verschiebngseoren die alle on einem Pn der Kane z einem beliebigen anderen Pn der erschobenen Kane ühren önnen. An einer Ece is eine eindeige Besimmng des loalen Verschiebngseldes möglich.

15 8.3 Opischer Flss opical low

16 8.3.1 Vorbemerngen

17 Vorbemerngen Repräsenier den Verla der Änderngen on Bildirradianzen raweren on Bild z Bild 1 einer Bildolge. Uner der Annahme dass die Änderng der rawere drch relaie oder absole Objebewegngen errsach wird is der opische Flss eine Approimaion des loalen Verschiebngseldes. ann deshalb zr approimaien Berechnng loaler Verschiebngselder benz werden Kann aber nich generell mi einem Feld loaler Verschiebngen ideniizier werden: eine or einer Kamera roierende Kgel mi onsaner Oberlächenbeschaenhei ein opischer Flss aber Bewegng also loales Verschiebngseld es sehende Kgel nd sich ändernde Licherhälnisse opischer Flss ür die Kgel aber eine Bewegng Deshalb is die Berechnng loaler Verschiebngselder drch den opischen Flss nr ner besimmen Annahmen möglich.

18 Bezeichnngen - rawer des Bildes im Pn der Bildebene = 012 K = δ cons Wir erwenden nn ach ür die Bildebene die Koordinaen nd anselle on nd. Eine Disreisierng werden wir ers späer berachen.

19 Opischer Flss Veoreld: = T mi: δ cons = opischer Flss des Bildpaares 1 charaerisier den Verla der Änderngen on raweren on Bild z Bild 1

20 Opischer Flss nd loale Verschiebngseoren der opische Flss soll der loalen Verschiebng ensprechen = d d * * = Pne Pal cons = δ ξ ψ T =ξ δ cons =ψ δ cons Bewegngsree des opischen Flsses.

21 8.3.2 Horn Schnc Verahren

22 Horn Schnc Bedingng e = δ δ δ δ δ δ 1 cons = = = = δ δ δ δ e = 0 sezen: cons = δ = 0 e = 0

23 Horn Schnc Bedingng = 0 = T = = gegeben gesch Die Horn Schnc Bedingng schrän die möglichen Were des opischen Flsses nr a eine erade der -Ebene ein. Dies is gerade das Aperrproblem. es

24 lahei des Veoreldes Asgehend on der Fessellng dass benachbare Oberlächenpne eines sich bewegenden Objees in ewa dieselben loalen Verschiebngseoren besizen ann als globale Annahme die lahei des Veoreldes des opischen Flsses geroen werden. min = Ω dd F g nahe bei Nll Menge der Bildpne ür die der opische Flss z berechnen is

25 Fehler bezüglich der üligei der Horn Schnc Bedingng Ω = min 2 dd F h =

26 esamehler Variaionsrechnng disree Ieraion min = Ω dd F g Ω = min 2 dd F h min = F F F h g λ Wichngsparameer: 10 z.b: 0 = λ λ Lösngsmöglicheien:

27 8.3.3 Lösng mi Hile der Variaionsrechnng

28 Lösng mi Hile der Variaionsrechnng Fnional Ω dd = 0 d d d d = 0 d d d d nowendige Bedingngen ür ein schwaches relaies Eremm Eler leichngen:

29 Lösng mi Hile der Variaionsrechnng = 0 d d d d = 0 d d d d = λ 2 = λ = 2 = 2 d d = 2 d d = 2

30 Lösng mi Hile der Variaionsrechnng = 0 d d d d 2 = λ = 2 = 2 d d = 2 d d = = = λ 2 = λ Laplace Operaor

31 Lösng mi Hile der Variaionsrechnng d d d d = 0 2 = λ Diese pariellen ellipischen Dierenialgleichngen 2.Ordnng önnen drch nmerische Ieraionserahren gelös werden. Drch die Vorgabe on Randwerbedingngen ür nd ann die Lösngsmannigaligei eingeschrän werden.

32 8.3.4 Lösng mi disreer Ieraion

33 Lösng mi disreer Ieraion Für die disree Ieraion werden die Bildpne nr in ganzzahligen Koordinaen nd ür ganzzahlige Zeipne = berache. i j 0 i I 1 0 j J 1 laheisehler: Die ersen Ableingen sind hier drch einache Dierenzen on Fnionsweren in benachbaren Bildpnen approimier. Für Randpne sind spezielle Feslegngen z reen.

34 Lösng mi disreer Ieraion Fehler der Horn-Schnc-Bedingng: Der z minimierende esamehler ergib sich z Dabei is es. Z besimmen sind die 2 I J Unbeannen i j i j so dass minimal wird. = J j I i h g j i j i λ

35 Lösng mi disreer Ieraion

36 Lösng mi disreer Ieraion

37 Lösng mi disreer Ieraion

38 Lösng mi disreer Ieraion

39 Lösng mi disreer Ieraion Allerdings sind in dieser Lösng die Were in den Pnen i j on den Weren in der 4-Nachbarscha on i j abhängig. Die Lösngen önnen aber in den erschiedenen Bildpnen nich gleichzeiig berechne werden. Deshalb wird ein ieraies Verahren benz.

40 Lösng mi disreer Ieraion

41 Berechnng der Ableingen

42 Berechnng der Ableingen Randpne mss man gesonder behandeln

43 8.3.5 Algorihms zr Berechnng des opischen Flsses

44 Algorihms

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

14 ERHALTUNGSGLEICHUNGEN

14 ERHALTUNGSGLEICHUNGEN Theorie nd Nmeri von Differenialgleichngen mi MATLAB nd SIMULINK K. Taber Universiä Hambrg SS8 Erhalngsgleichngen 4 EHALTUNGSGLEICHUNGEN THEOIE UND NUMEIK 4. Einführng Gegensand des vorliegenden Kapiels

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Regelungs- und Systemtechnik 3

Regelungs- und Systemtechnik 3 Regelng Mecharonischer yseme, Regelngs- nd ysemechnik 3 Kaiel 5: Riccai-Oimal-Regler ro. Dr.-Ing. Li Fachgebie imlaion nd Oimale rozesse O Herleing nd nwendng des Riccai-Oimal-Reglers R l Vorkennnisse:

Mehr

3. Das Identifikationsproblem

3. Das Identifikationsproblem 3. Das Idenifikaionsroblem 3. 3. Idenifizierbarkei eines Modells Den Parameern des Modells können afgrnd der Beobachngswere für die Variablen eindeig Were zgewiesen werden. Zlässige Srkr des Modells: jede

Mehr

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrshl für Ingeniermahemaik Universiä Bareh Opimale Seerng parieller Differenialgleichngen Opimal Conrol of Parial Differenial Eqaions (Teil 1: WS 2011/12) 12. Übng ( Opimale Seerng

Mehr

Einleitung. Modulationsverfahren

Einleitung. Modulationsverfahren Pro. Dr.-Ing. W.-P. Bchwald Modlaionsverahren Einleing U Signale über einen Kanal überragen z können, ss i allgeeinen eine Modlaion a eine geeignee rägerreqenz erolgen, deren Lage an die Kanaleigenschaen

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2 Inhalsverzeichnis Eperimenelle Enwrfsverfahren für recken mi Asleich.... mmenzeiverfahren nach hn.... erfahren nach Chien, Hrones nd eswick... 4.3 erfahren nach Zieler nd ichols... 6.4 Eperimenelles Einsellverfahren

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Optimale Steuerung 2

Optimale Steuerung 2 Opimae eerng Kapie 6: iccai-opima-eger ro. Dr.-ng. Li Fachgebie imaion nd Opimae rozee O Hereing nd nwendng de iccai-opima-eger Vorkennnie: Grndagen der egengechnik Zandramdareng eerbarkei nd eobachbarkei

Mehr

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

Profilwiderstand des Profils Gö 387

Profilwiderstand des Profils Gö 387 Prakikm Fgegaerodynamik 3. Versch Profiwidersand des Profis Gö 387 16.11.1 Dip.-Ing.. égin ap. Prof. Dr.-Ing.. reisamer 16.11.1 Prakikm Fgegaerodynamik - 3. Versch: Profiwidersand des Profis Gö 387 1 Aerodynamische

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve

Mehr

Physik A VL10 ( )

Physik A VL10 ( ) Physik A VL 3.. Ilse nd Sösse Ilse nd Ilserhalng Sossgeseze Bewegng bei koninierlicher assenänderng: Rakeenanrieb Der Ils oder rafsoß Ilse nd Sösse rafwirkngen af einen örer sind häfig zeilich begrenz

Mehr

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar:

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar: echeckgeneraor mi Schmi-rigger echeckgeneraor mi Schmi-rigger Eine Anwendng des Schmi-riggers als Mlivibraor sell der echeckgeneraor nach Bild dar U sa 0 Bild -U sa- C echeckgeneraor mi inverierendem Schmi-rigger.

Mehr

4. Erhaltungssätze für Masse und Impuls

4. Erhaltungssätze für Masse und Impuls 4. Erhalngssäze für Masse n Impls Wie ie klassische Mechanik basier ie Srömngsmechanik af er Erhalng von Masse Impls Energie Die Erhalngsgeseze gelen für as infiniesimal kleine Flielemen n für reiimensionale

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre Einführng in die Meteorologie (met211) - Teil VI: Dnamik der Atmosphäre Clemens Simmer VI Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre.

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel ) 1. Übun KW 43) Aufabe 1 M 1. Schwinender Körper ) Ein schwinender Körper ha die Geschwindiei v x ) = v m cosπ ). Er befinde T sich zur Zei 0 = T am Or x 4 0. Geben Sie den Or x und die Beschleuniun a x

Mehr

4.Teil: Mechanik realer Körper

4.Teil: Mechanik realer Körper Einführung in die Theoreische Physi 4Teil: Mechani realer Körper Siegfried Pery 4 Januar 03 I n h a l : Der Massenmielpun und seine Bewegungsgleichung Der Impulssaz 6 3 Das Drehmomen 7 4 Der Drehimpuls

Mehr

Kapitel 1: Einführung

Kapitel 1: Einführung Opimale Seerng /Prozessopimierng Kapiel : Einführng Prof. Dr.-Ing. P Li Fachgebie Simlaion nd Opimale Prozesse SOP Lf- nd Ramfahrindsrie Dynamische Vorgänge: Sar Landng Flgbahnregelng Chemieindsrie Dynamische

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

5. Differentialrechnung für Funktionen mit mehreren Variablen

5. Differentialrechnung für Funktionen mit mehreren Variablen Analsis II Daniel Ehba D-BAG Lieahinweise: Taschenbch de Mahemai I.N. Bonsein K.A. Semendjajew G. Msiol H. Mühlig 6. ollsändig übeabeiee nd egäne Alage elag Hai Desch 6. 5. Dieenialechnng ü nionen mi meheen

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

matheskript Analysis Teil I GANZRATIONALE FUNKTIONEN Ortskurve 12. Klasse Jens Möller

matheskript Analysis Teil I GANZRATIONALE FUNKTIONEN Ortskurve 12. Klasse Jens Möller mheskrip Anlsis Teil I Orskrve GANZRATIONALE FUNKTIONEN 9. Klsse Jens Möller Aor: Jens Möller Owingen Tel. 0755-9 jmoellerowingen@ol.com 5. Aflge Owingen 0 Besellng nr direk bei folgender Adresse mheskrip

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN Übungsbuch Physi Peer Müller, Hilar Heineann, Hellu Zier, Heinz Kräer Grundlagen Konrollfragen Beispiele Aufgaben ISBN 3-446-478-4 Leseprobe Weiere Inforaionen oder Besellungen uner hp://www.hanser.de/3-446-478-4

Mehr

Ferienkurs Analysis 3 für Physiker. Integralsätze

Ferienkurs Analysis 3 für Physiker. Integralsätze Ferienkrs Analysis 3 für Physiker Integralsätze Ator: Benjamin Rüth Stand: 17. März 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Differentialoperatoren 3 2 Integralsatz von Gaß 4 2.1

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage Thomas Beier Petra Wrl Regelngstechnik Basiswissen, Grndlagen, Beispiele 2., ne bearbeitete Aflage 1.2 Darstellng von Regelkreisen 19 Am Eingang der Regelstrecke befindet sich das Stellglied. Es ist ein

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

Labor Übertragungstechnik

Labor Übertragungstechnik Labor Überragngsechnik Pro. Dr. Ing. Lilia Laji Dipl. Ing. Irina Ikker Qadrar Aplidenodlaion Grppenner: eilneher: Nae Vornae Marikelner 3 Osalia Hochschle ür angewande Wissenschaen Hochschle Branschweig/Wolenbüel

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

STECKKUPPLUNG IR-Serie Kugelventil IRV-Serie Kegelventil

STECKKUPPLUNG IR-Serie Kugelventil IRV-Serie Kegelventil IR-Serie Kgelvenil IRV-Serie Kegelvenil IR nd IRV-Serie - hydralische Seckkpplngen mi Kgel- nd Kegeldichng Die Seckkpplng mi Kgelvenil der IR-Serie is in der Landechnik nd Indsrie die 1. Wahl, wenn nsabere

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

3.2. Strömungstechnische Auslegung der PELTON Turbine

3.2. Strömungstechnische Auslegung der PELTON Turbine 3.. Srömngsehnishe Aslegng der PELTON Trbine 3... Geshindigkeisdreiek Legende: Indies: a - Axiale Rihng Umfangsrihng - Absolgeshindigkei des Srahls nah der Düse vor Lafrad - Umfangsgeshindigkei des Lafrades

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Wiederholung. Algorithmen und Datenstrukturen Kapitel 10. Motivation. Begriffe und Definitionen

Wiederholung. Algorithmen und Datenstrukturen Kapitel 10. Motivation. Begriffe und Definitionen Algorihmen nd Daenrkren Kapiel Frank Heimann heimann@informaik.ni-hambrg.de 6. Janar 2016 Frank Heimann heimann@informaik.ni-hambrg.de 1/ Graphen Grndlagen Definiion nd Darellng Tiefen- nd Breienche Topologiche

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den

Physikprotokoll. 1 Versuch Nr.: 7 Moser Guido Dünne Linsen Fulda, den Moser Guido Dünne Linsen Fulda, den 0..998 Dünne Linsen Was sind Linsen? Linsen sind meis Glaskörper, die lichdurchlässig sind und einallende Lichsrahlen ablenken. Die Ablenkung der Srahlen is dabei vom

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 4. Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen 4.2 egiser 22 Technische Informaik 2 Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen Bei chalnezen exisier kein

Mehr

Lokale Eigenschaften des Hilbert-Symbols

Lokale Eigenschaften des Hilbert-Symbols Lokale Eigenschaften des Hilbert-Symbols (Nach J.P. Serre: A Corse in Arithmetic) Bettina Böhme, Karin Loch 24.05.2007 Im Folgenden bezeichnet k entweder den Körer R der reellen Zahlen oder den Körer Q

Mehr

Musterlösungen zur Klausur Informatik III WS 02/03 Seite 1

Musterlösungen zur Klausur Informatik III WS 02/03 Seite 1 Muserlösungen zur Klausur Infrmaik III WS 02/03 Seie Aufgabe. ( Punke) Es seien zwei Schlangen S, S 2 und ein Keller K gegeben. In S befinden sich die Zahlen, 2,..., n(n > 2) (in dieser Reihenflge). Sie

Mehr

ANALYTISCHE BERECHNUNGEN AM

ANALYTISCHE BERECHNUNGEN AM Schule Bundesgymnasiu um für Berufsäige Salzburg Modul Thema Mahemai 8 Arbeisbla A 8-6 Kreis ANALYTISCHE BERECHNUNGEN AM KREIS Bisher onnen wir lediglich die Fläche, den Umfang oder den Radius eines Kreises

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorihmen II Vorleung am 24.10.2013 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Univeriä de Lande Baden-Würemberg und Algorihmen naionale Forchungzenrum II Wineremeer 2013/2014

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12 Zusammenfassung Das klassische dynamische Gleichgewichsmodell Geldheorie und Geldpoliik Winersemeser, 20/2 Haushale Wir nehmen an Haushale maximieren ihren ineremporalen Nuzen und leben unendlich lang

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Systemtheorie: Übertragungssystem: Beispiele

Systemtheorie: Übertragungssystem: Beispiele Sysemheorie: lieer mahemaische Werkzeuge, um die Umwandlung einer physikalisch kodieren Inormaion in einer andere Darsellung z.b. vom Orsraum in den Fourierraum ohne Inormaionsverlus zu beschreiben. Überragungssysem:

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Technische Mechanik I. Vektorrechnung Eine Einführung

Technische Mechanik I. Vektorrechnung Eine Einführung Uniersität Stttgart Institt für Mechanik Prof. Dr.-Ing. W. Ehlers www. mechba. ni-stttgart. de Ergänzng zr Vorlesng Technische Mechanik I Vektorrechnng Eine Einführng WS 2015/16 Lehrsthl für Kontinmsmechanik,

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt IV. Diffrnialglichngn: z.b. y d Klassifiaion von Diffrnialglichngn 1. Gwöhnlich / Parill Dgl. y f, 1 nabhängig Variabl gwöhnlich Dgl mhr Variabln : parill Dgl. Ordnng Is di höchs vorommnd bling y, y...

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Aerodynamik des Flugzeugs Numerische Strömungssimulation

Aerodynamik des Flugzeugs Numerische Strömungssimulation Aerodnamk des Flgzegs Nmersche Srömngssmlaon Enleng Srömngssmlaon n Wndkanälen 3 Nmersche Srömngssmlaon 4 Poenalsrömngen 5 Tragflügel nendlcher Sreckng n nkompressbler Srömng 6 Tragflügel endlcher Sreckng

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr