Versuch 41 Debye-Scherrer-Aufnahmen

Größe: px
Ab Seite anzeigen:

Download "Versuch 41 Debye-Scherrer-Aufnahmen"

Transkript

1 Fortgeschrittenenprktikum (WS 06/07 Debye-Scherrer-Aufnhmen Ziel des durchgeführten Versuchs ist die Bestimmung der Kristllstruktur zweier Proben Inhltsverzeichnis 1 Theorie 11 Einleitung 1 Die Struktur eines Kristlls 13 Der Abstnd zwischen zwei Netzebenen 4 14 Beugung von Röntgenstrhlen 4 15 Versuchsufbu und Durchführung 6 Auswertung 8 1 Vorbereitung 8 Anlyse der Probe 3 und des Slzes 9 A Anhng 11 A1 Litertur 11 A Messdten 11 1

2 1 Theorie 11 Einleitung In diesem Versuch sollen mit Hilfe des DEBYE-SCHERRER-Verfhrens Kristllstrukturen zweier Proben bestimmt werden Der überwiegende Teil der festen Mterie ht eine Kristllstruktur uch wenn diese meist mkroskopisch nicht zu erkennen ist d die einzelnen Teilkristlle Kristllite gennnt sttistisch verteilt vorliegen Die einzelnen Kristllite sind streng periodisch ufgebut und können dher mthemtisch leicht erfsst werden: 1 Die Struktur eines Kristlls Ein Kristll besteht us einer räumlich periodischen Struktur die mn sich ls ein Punktgitter vorstellen knn dessen einzelne Punkte mit einem oder mehreren Atomen zweidimpunktgitter besetzt sind Mn bezeichnet b Bsis diese Atomec oder Kristllstruktur Atomgruppen ls Bsis Abb1: deszusmmenhng Kristlls In drei zwischen Rumdimensionen Punktgitter Bsis genügen und Kristllstruktur nun drei(drgestellt Bsisvektoren n einem fundmentle Trnsltionen gennnt um im Zweidimensionlen ds Gitter ufzuspnnen (s Abbildung 1 Eine Beispiel wichtige Eigenschft von Kristllen ist die Trnsltionssymmetrie: Verschiebt mn! und ds c Gitter die sogennnten um einen Vektor t fundmentlen = n 1 + n b + Trnsltionen n3 c mit gnzzhligen ein mit n 1 nderen und nhilfe 3 so ds gesmte überführt Gitter mn ufgespnnt in sich werden selbst knn (siehe Abb b c Abb: Erzeugung eines Punktgitters mit Hilfe der fundmentlen Trnsltionen! b! und c! Abbildung 1: Drstellung eines Kristllgitters mit den drei fundmentlen Trnsltionen [1]! Es entsteht ddurch dss mn jeweils um gnzzhlige Vielfche der Vektoren b!! Für eine systemtische Einordnung verschiedener Kristlltypen benutzt mn und c fortschreitet Jeder Punkt der durch einen Vektor die Elementrzelle! dh! die kleinste! Volumeneinheit! die den Kristll eindeutig festlegt Eine Konstruktionsmöglichkeit t! n1 " n b " n3 cist ds Prllelepiped (n 1 n n 3 gnzzhlig us den fundmentlen Trnsltionen zu benutzen Knn eine Elementrzelle konstruiert werden die drgestellt nur werden knn ist lso ein Gitterpunkt Verschiebt mn ds Gitter um einen Vektor! ein Atom enthält nennt mn diese primitiv Besteht die Bsis des Kristlls us mehr t so lswird einemes Atom in sich knn überführt mn keine (Trnsltionssymmetrie primitive Elementrzelle des Gitters konstruieren Von Interesse drei Dimensionen ist die kleinste gibt eseinheit nun 14 verschiedene die eine Kristllstruktur Gittertypen vollkommen festlegt (Elementrzelle Mn knn dzu ds von den Vektoren! b! die mn nch der Länge der Vektoren bis c und deren Winkel α β γ klssifiziert! und Von c diesen ufgespnnte 14 Typen ist * in diesem Versuch nur ds kubische System relevnt bei dem die drei Prllelepiped benutzen Befinden sich dort nur in den 8 Eckpunkten Atome dnn Vektoren b c generell gleich lng sind und die Winkel 90 betrgen Die drei spricht möglichen mn von kubischen einer primitiven Gittertypen Elementrzelle sind Sie enthält nur ein Atom denn jeder Eckpunkt muss uf die 8 Elementrzellen die dort zusmmenstoßen verteilt werden Nicht jede Kristllstruktur lässt sich jedoch durch Vervielfchung einer primitiven Elementrzelle ufbuen Ds geht genu dnn nicht mehr wenn die Atome nicht nur * Wie us Abb hervorgeht sind verschiedenen Prllelepipede zur Drstellung einunddesselben!! Gitters möglich Mn brucht zb nur den Vektor gegen 'uszutuschen Aus Gründen der Zweckmäßigkeit wählt mn nch Möglichkeit solche Prllelepipede in denen die Vektoren Winkel von 90 oder 10 einschließen

3 Ds kubisch-primitive Gitter (sc: Hier enthält die Elementrzelle genu ein Atom in der Würfelecke Ds kubisch-rumzentrierte Gitter (bcc: Dieser Gittertyp enthält zusätzlich ein Atom in der Würfelmitte Die Koordinten der beiden Atome sind in Einheiten der Gitterkonstnten somit (0 0 0 und 1 1 Ds kubisch-flächenzentrierte Gitter (fcc: Hier befinden sich neben dem Atom uf der Würfelecke noch Atome in der Mitte der Würfelseiten Die Positionen dieser Atome sind ( und ( In der Ntur gibt es einige häufig vorkommende Gitter die us den oben gennnten zusmmengesetzt sind Im folgenden Abschnitt sind die wichtigsten dvon ufgeführt: Die Dimntstruktur besteht us zwei fcc-gittern die um eine Viertel der Rumdigonle verschoben sind Diese Struktur tritt vor llem bei den vierwertigen Elementen C Si und Ge uf In der Elementrzelle findet mn die cht Atome n folgenden Stellen: ( ( ( und 4 ( Die Zinkblende-Struktur ist ufgebut wie die Dimnt-Struktur jedoch sind die beiden fcc-untergitter mit nderen Atomrten besetzt (Bsp: Zinksulfid Die Steinslz-Struktur ist zusmmengesetzt us zwei fcc-gittern die um die Hälfte der Rumdigonlen versetzt sind Die Untergitter bestehen us verschiedenen Atomrten A und B wie beispielsweise beim NCl der Fll ist Die Positionen der einzelnen Atome sind hierbei A : ( ( B : 1 1 ( (1 1 ( Die Cäsiumchlorid-Struktur ist us zwei sc-gittern ufgebut die um eine hlbe Rumdigonle verschoben sind Die beiden (verschiedenen Atome liegen lso bei (

4 Die Fluorit-Struktur tritt bei einigen Verbindungen des Typs AB uf und besteht us drei fcc-gittern die um 1/4 bzw 3/4 der Rumdigonlen versetzt sind Die einzelnen Atome liegen n den Positionen A : ( ( B : ( ( ( ( Der Abstnd zwischen zwei Netzebenen Zur Kennzeichnung von Netzebenen benutzt mn in der Festkörperphysik die so gennnten Miller sche Indizes Mn betrchtet hierzu die Schnittpunkte einer Ebene mit den Achsen des us b c ufgespnnten Koordintensystems Die reziproken Werte dieser Achsenbschnitte gegebenenflls multipliziert mit einer pssenden gnzen Zhl dmit mn ohne Brüche uskommt bezeichnet mn dnn ls MIL- LER sche Indizes Eine Ebene die die Achsen n den Stellen 1/ 1/3 schneidet ht folglich die MILLER schen Indizes (146 Negtive Werte werden mit Blken über der Zhl gekennzeichnet Schneidet eine Ebene eine Achse nicht so ist der zugehörige Index 0 Aus geometrischen Überlegungen knn mn nun einen Ausdruck für den Abstnd d der Netzebene zum Ursprung herleiten der von der Gitterkonstnte und den MILLER schen Indizes (hkl bhängt: d = h + k + l (11 14 Beugung von Röntgenstrhlen Mn knn die Wechselwirkung der Röntgenstrhlung mit dem Kristllgitter ls klssischen Streuprozess interpretieren dh die Intensität der gestreuten Welle ist die eines HERTZ schen Dipols Die Formel für den HERTZ schen Dipol enthält eine 1/m -Abhängigkeit die dfür sorgt dss die schweren Atomkerne m Beugungsprozess nicht beteiligt sind Für die weitere Betrchtung spielen lso nur die Elektronen eine Rolle Atomformfktor Bei der Streuung n einem Atom dh lso im Wesentlichen n der Elektronenhülle des Atoms muss mn berücksichtigen dss die Elektronen in einer Ldungsverteilung ρ ( r um den Kern verschmiert sind Die Intensität wird lso von der Beugung n einer punktförmigen Ldung bweichen Diese Abweichung formuliert mn im Atomformfktor f = I I e der die Beziehung zwischen der m Atom gestreuten Intensität I und der Intensität der Streuung n einem einzelnen Elektron I e drstellt Es zeigt sich dss mn 4

5 für die Berechnung dieses Formfktors über die Ldungsverteilung phsenrichtig integrieren muss ws uf einen Ausdruck f = Hülle e πi r ( k k0 ρ ( r d 3 r führt den mn ls FOURIER-Trnsformierte der Ldungsverteilung erkennt Brgg-Bedingung Die Streuung der Röntgenstrhlen findet nicht nur n einer Netzebene sttt sondern uch n dvor oder dhinter liegenden Netzebenen Es müssen dher uch Intereferenzeffekte der n den verschiedenen Ebenen reflektierten Wellen betrchtet werden Mn knn zeigen dss eine konstruktive Interferenz nur dnn uftritt wenn die BRAGG-Bedingung nλ = d sin θ (1 erfüllt ist wobei λ die benutze Wellenlänge ist d der Netzebenenbstnd ist und n gnzzhlig n = 1 ist Benutzt mn Wellenvektoren zur Drstellung der Bedingung lutet diese k k0 = g wobei g der reziproke Gittervektor ist der us einem Bsissystem A B C zusmmengesetzt ist welches wie folgt us den fundmentlen Trnsltionen hervorgeht: A = 1 V b c; B = 1 V c ; C = 1 V b Hierbei ist V ds Volumen der Elementrzelle Der Vektor g = h A + k B + l C steht senkrecht uf der Netzebene mit den Indizes (hkl Strukturfktor Betrchtet mn nun zusätzlich die Streuung n einer Elementrzelle muss mn berücksichtigen dss uch zwischen den n den einzelnen Atomen reflektierten Wellen Interferenzeffekte uftreten können Ähnlich wie beim Atomformfktor muss mn phsenrichtig integrieren wegen der diskreten Ldungsverteilungen der in der Elementrzelle verteilten Atome reicht hier llerdings eine Summe Benutzt mn für den Ausdruck k k0 die BRAGG-Bedingung knn mn die Strukturmplitude S schreiben ls S = j f j e πi(x jh+y j k+z j l Hierbei ist f j der Atomformfktor des j-ten Atoms und die x j y j z j die Position des Atoms 5

6 zugehörige Netzebene finden Dieses Problem lässt sich oft nur durch systemtis Probieren lösen Von großer Bedeutung ist es dbei lle diejenigen Netzebene erkennen die keinen gebeugten Strhl erzeugen; denn - wie eine Berechnung Strukturmplituden ergibt - verschwinden für jede Kristllstruktur (zumindest in h symmetrischen Systemen nige typische Reflexe An sen lässt sich in vielen F die zugrundeliegende Kri gemeinen keinen Brgg-R Winkel getroffen (reltive weichungen von der Grö Ring struktur erkennen Probe Ein Röntgenstrhl der u nen Einkristll trifft wird im Röntgen- Strhl erzeugen; es sei denn würde eine Netzebenens Film zufällig unter dem Brggs Abb11: Prinzipieller Versuchsufbu zur Herstellung einer ordnung 10-3 führen bereits Abbildung : Prinzipieller Versuchsufbu beim DEBYE-SCHERRER-Verfhren Debye-Scherrer-Aufnhme Ausfll [1] des Reflexes Um 15 Versuchsufbu und Durchführung Die Abbildung zeigt den prinzipiellen Versuchsufbu Es wird eine Röntgenquelle benutzt (betrieben bei 40 kv und 0 ma die im Wesentlichen die chrkteristische Strhlung einer Kupfernode liefert Mit Hilfe eines Filters wird die K β -Linie im Spektrum eliminiert und es verbleiben die K α1 - und K α -Linien die geringfügig verschiedene Wellenlängen hben: λ 1 = m λ = m Diese Aufspltung knn in der Auswertung Korrekturen notwendig mchen Ds Röntgenlicht der Quelle tritt durch eine kleine Öffnung in ein zylindrisches Gehäuse ein in dessen (ungefähren Mitte sich eine ebenflls zylindrische Probe befindet An dieser Stelle treten die zuvor Erläuterten Rektion der Strhlung mit der Kristllstruktur sttt Die hierbei uftretenden BRAGG-Reflexe werden mit einem entlng der Gehäuseinnenwnd befestigten photogrfischen Film ufgenommen D die BRAGG-Bedingung bei einem Einkristll nur unter großem Zufll genu erfüllt wäre nutzt mn eine fein pulverisierte Probe deren Mikrokristlle sttistisch verteilt sind und die zudem noch mit einem Motor rotiert werden knn Auf diese Weise sollten ständig genug Kristlle in der richtigen Ausrichtung liegen um Reflexe zu ermöglichen Die unter dem Winkel θ gebeugte Strhlung wird sich ufgrund der sttistischen Verteilung der Kristllorientierungen uf einem Kegelwinkel mit dem Öffnungswinkel θ wiederfinden Prktisch erkennt mn Abschnitte nnähernd kreisförmiger Ringe uf dem Film Mn knn die Abstände diese Ringe zum Durchstoßpunkt nutzen um den Beugungswinkel zu ermitteln und so eine Zuordnung zu verschiedenen Reflexen durchzuführen Schlussendlich knn mn so Rückschlüs- 6

7 se uf die Kristllstruktur mchen Die Belichtungszeiten für die benutzen Proben sind 1h45min für die Probe 3 sowie 3h30min für ds Slz Zu bechten sind noch zwei systemtische Fehler die im Zusmmenhng mit diesem Verfhren uftreten können: Befindet sich die Probe nicht exkt uf der Symmetriechse des Filmzylinders werden lle Ringe um einen systemtischen Abstnd vergrößert oder verkleinert Diese Abweichung V zur Gitterkonstnte ergibt sich bei einer Verschiebung der Probe um v und einem Rdius des Filmzylinders R zu V = v R cos θ Die zweite Fehlerquelle entsteht ddurch dss die Probe die einfllenden Röntgenstrhlen fst vollständig bsorbiert Die Beugung findet ddurch ttsächlich nur n einem schmlen Streifen des Mterils sttt Dies führt dzu dss mn den Winkel θ systemtisch zu groß misst ws sich insbesondere bei kleinen Winkeln bemerkbr mcht Wenn mn von einem Probenzylinderrdius ρ und einem Abstnd Fokus-Probe F usgeht beträgt diese Abweichung A A = ρ { 1 R } cos θ R F θ Bei der hier benutzten Apprtur ist diese letzte Korrektur klein gegenüber der ersten ws eine ungefähre Proportionlität zwischen der Summe der Abweichungen und cos θ nhe legt Mn knn dher eine Ausgleichsrechnung bemühen um einen möglichst guten Wert für die Gitterkonstnte zu finden 7

8 sc bcc fcc dimond Tbelle 1: Die MILLERschen Indizes der Netzebenen mit nicht verschwindenden Reflexen Auswertung 1 Vorbereitung Zunächst werden lle Netzebenen (hkl einer Elementrzelle bestimmt deren Reflexe nicht verschwinden Diese Berechnung erfolgt über die Untersuchung der Strukturmplitude S Die Ergebnisse sind der Tbelle 1 zu entnehmen S(hkl = i f i e πi(x ih+y i k+z i l Um im späteren Verluf der Auswertung die Struktur der untersuchten Probe zu erkennen wird nun ein Zusmmenhng zwischen den messbren Winkeln θ und den MILLERschen Indizes der soeben bestimmten Ebenen ufgezeigt Aus der BRAGG-Bedingung erster Ordnung λ = d sin θ und der Formel zur Bestimmung des Netzebenenbstnds d = h + k + l erhält mn durch Einsetzen den gesuchten Zusmmenhng λ h sin θ + k + l = d m = Normieren führt uf: d 1 d i = mi m1 Die normierten Wurzeln sind in der Tbelle ufgelistet 8

9 Tbelle : sc bcc fcc dimond mi m1 der jeweiligen Ebenen us Tbelle 1 Anlyse der Probe 3 und des Slzes Für beide Untersuchungen gelten bgesehen von der Belichtungszeit die gleichen Rhmenbedingungen ρ = 1mm F = 130mm λ = Å Probenrdius Abstnd Fokus-Probe mittlere Wellenlänge λ Kα1 = Å Wellenlänge der K α1 -Linie λ Kα = Å Wellenlänge der K α -Linie R = 57 3mm U = 360mm Kmerrdius Kmerumfng Den Aufnhmen werden die Abstände r der Ringe vom Mittelpunkt der Austrittslochung entnommen D die Kmer einen Umfng von genu 360mm ht entspricht dieser Abstnd in mm ebenflls θ in Aus dem sich ergebenden Winkel θ wird der entsprechende Netzbstnd d = λ sin θ errechnet und gemäß d 1 d i normiert Auf der DEBYE-SCHERRER-Aufnhme für die Probe 3 sind 10 Linien zu erkennen uf der für ds Slz 15 Für die ersten 8 Linien der Probe 3 und die ersten 9 Linien des Slzes (gezählt wird von der Austrittsöffnung weg wird mit einer mittleren Wellenlänge λ gerechnet Die nderen Linien sind ls Aufspltung einer K α -Linie zu behndeln und werden entsprechend mit λ Kα1 und λ Kα gerechnet mi Ein Vergleich der berechneten Quotienten d 1 d i und m 1 legt nhe dss Probe 3 eine bcc-struktur und Slz eine Dimnt-Struktur besitzt Mit der beknnten Struktur wird nun die Gitterkonstnte us jedem Netzebenenbstnd errechnet und gegen cos θ ufgetrgen Nch einer lineren Regression (mit ORIGINPRO 9

10 Nr r[mm] θ[ ] θ[rd] d[å] Tbelle 3: Messwerte der Probe 3 Nr r[mm] θ[ ] θ[rd] d[å] Tbelle 4: Messwerte des Slzes 10

11 Slz dimond Probe 3 bcc d1 d i mi m 1 d1 d 0 mi m Tbelle 5: Vergleich der errechneten Quotienten 75 wird der sich ergebende -Achsen Abschnitt ls whrscheinlichste Gitterkonstnte notiert So zeigt sich dss Probe 3 whrscheinlich eine Gitterkonstnte von = 3 30 ± ht und Slz vermutlich eine von = ± Die Fehler folgen ebenflls us der Ausgleichsrechnung Bei der Probe 3 könnte es sich um Tntl hndeln Tntl ht eine bcc-struktur und je nch Quelle eine Gitterkonstnte von = 3 9 bzw = 3 31 Für ds Slz konnten wir keinen pssenden Knditten finden A Anhng A1 Litertur [1] Die Abbildungen im Theorieteil stmmen us der Versuchsnleitung ( prktikum/f-anleitungen/inhlthtm A Messdten Messdten ngefügt in Kopie 11

2 Blatt - Festkörperphysik 2-2D Gitter

2 Blatt - Festkörperphysik 2-2D Gitter Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

a 2π a) Der Ebenenabstand ist gegeben durch

a 2π a) Der Ebenenabstand ist gegeben durch Aufgbe 1 Ein bcc Kristll it einer Kntenlänge 6Å der kubischen Einheitszelle wird it Röntgenlicht der Wellenlänge λ3å bestrhlt. ) Welches sind die Millerindizes (h,k,l) (bzw. die Indizes des entsprechenden

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Fragen und Antworten zu Werkstoffe

Fragen und Antworten zu Werkstoffe Springer-Lehrbuch Frgen und Antworten zu Werkstoffe Berbeitet von Ewld Werner, Erhrd Hornbogen, Norbert Jost, Gunther Eggeler 8., ktulisierte Auflge 2016. Tschenbuch. XV, 441 S. Softcover ISBN 978 3 642

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert Eine Übersicht mit Bunleitungen für den Einstz in der Lehre Februr 016 Juli Bienert Inhltsverzeichnis 1 Bunleitungen... 1 1.1 Aufbu der Anleitungen... 1 1. Anleitungen... Weiterführende Litertur... 9 Anhng

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

3.1 Klassische Beschreibung der Bremsstrahlung

3.1 Klassische Beschreibung der Bremsstrahlung Kpitel 3 Inverser Photoeffekt In Kpitel 2 hben wir den Photoeffekt kennengelernt. Der Effekt beschreibt die Ttsche, dss durch die Bestrhlung einer Metlloberfläche mit Licht, Elektronen us einem Metll gelöst

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6

1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6 Mrkow-Ketten JUAN LU AUSARBEITUNG ZUM VORTRAG IM Blockseminr Stochstik (WINTERSEMESTER 28/9, LEITUNG PD DR. GUDRUN THÄTER) Zusmmenfssung: Eine Mrkow-Kette ist eine spezielle Klsse von stochstischen Prozessen.

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF).

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF). 7. Geometrische Folgen (exponentielles Wchstum) Beispiele: 2, 6, 8, 54, 62,... = 6= 2 8 8, -4, 2, -,,,... =, ds Vorzeichen wechselt b (lternierende Folge), -,, -,... = Definition: Eine Folge, bei welcher

Mehr

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton)

1.Wellenoptik. 1.1 Lichttheorien. 1.2 Lichteigenschaften. 1. Strahlentheorie (Empedokles, Alhazen, Snellius) 2. Korpuskeltheorie (Newton) 1.Wellenoptik 1.1 Lichttheorien 1. Strhlentheorie (Empedokles, Alhzen, Snellius) 2. Korpuskeltheorie (Newton) 3. Wellentheorie (Huygens, Young, Fresnel) 4. Quntentheorie (Plnck, Einstein) 1.2 Lichteigenschften

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch:

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch: LÖSUNG AUFGABE 5 ZUR INDUSTRIEÖKONOMIK SEITE VON 5 Aufgbe 5 (Linere Nchfrgefunktion): Gegeben sei die (ggregierte) Nchfrgefunktion des Gutes durch: ( = b, > 0, b > 0. Dbei bezeichnen den Preis des Gutes

Mehr

60 -Verwandte der pythagoreischen Zahlentripel

60 -Verwandte der pythagoreischen Zahlentripel Elem. Mth. 58 (200) 118 126 001-6018/0/00118-9 DOI 10.1007/s00017-00-0195-y c Birkhäuser Verlg, Bsel, 200 Elemente der Mthemtik 60 -Verwndte der pythgoreischen Zhlentripel Albrecht Schultz Albrecht Schultz,

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Geraden im Raum Vektoren

Geraden im Raum Vektoren Seite 8 Gerden im Rum Vektoren Punkte im Rum Seite 8 B A C D x D A B O C x x x x x b) A ( ); B ( ); C ( ); D ( ); E ( ); F ( ); G ( ); H ( ) ) Diese Punkte liegen in der x x -Ebene (x x -Ebene; x x -Ebene).

Mehr

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 004/005 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P. Es gilt =. Berechne jeweils den Wert des Terms: ) 0,3 b) () c) : ( + ) P. Von 800 Jugendlichen lesen lut einer Umfrge

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr